
EXAMPLE SOURCE CODE EVENT

INSTRUCTIONS: Write your python code in the following functions to programmatically solve the
problem given in each comments section. There may be several possible ways to obtain the solution to a
problem. In these answers, only one of the possible methods has been given.
Multiple choice problems should return only the correct letter.
NOTE: Actual event will typically include many more problems, and will have an increasing difficulty as
demonstrated here. Problem 6 is an example of the highest difficulty you might encounter.

PROBLEM 0:
Points: 2
Which python operator returns the remainder of a division equation.
Return only the correct letter.
def problem0():

A) <>
B) /=
C) /
D) %

return "D"

PROBLEM 1:
Points: 2
Which of the following statements will return False. x = 10, y = 20
Return only the correct letter.
def problem1():

A) (x != y and not(x > y))
B) not(x == y) or ((y / 3) == x)
C) (x <= y and not((x + x) == y))
D) (x**2 == y and y == x) or (x*2 >= y)

return "C"

PROBLEM 2:
Points: 3
Find the sum of the positive, even numbers between 0 and 100.
Write your code and return the sum.
def problem2():

sum = 0
for i in range(0,101):

if (i % 2 == 0):
sum += i

return sum

Problem 3:
Points: 3
Find the amount of prime numbers between 2 and 10000.
Write your code and return the number.
def problem3():

count = 0
for i in range(2,10000):

for n in range(2, i):
if (i % n == 0):

break
else:

count += 1
return count

Problem 4:
Points: 3
Bonus Objective: Use a while loop. Points: 1
Using the given string, calculate the sum of the ord() value of each character. The ord() function returns
the numerical value of a single character.
Write your code and return the sum.
def problem4():

str = "How much is this string of characters, '!#)!^$!', actually worth?"
sum = 0
i = 0
while (i < len(str)):

sum += ord(str[i])
i += 1

return sum

Problem 5:
Points: 4
Find the smallest positive integer number that has 50 divisors.
Write your code and return the number.
def problem5():

count = 0
number = 1
condition = True
while (condition):

for i in range(1,number+1):
if (number % i == 0):

count += 1
if (count == 50):

condition = False
break

if (count < 50):
count = 0
number += 1

return number

Problem 6:
Points: 8
Bonus Objective: Include comments within your code. Points: 1
Consider a number n is backwards if it is written in reverse order.
34 written backwards is 43 and 103 written backwards is 301. Using positive
integers, find the total number of backwards numbers less than one-million
where the sum of the number forwards and backwards contains only
odd digits (34+43=77).
Write your code and return the answer.
def problem6():

count = 0
Loop through all possible numbers from 1 to 1000000
for number in range(1,1000000):

Get the backward value of the number using python's slicing technique
reverse = int(str(number)[::-1])
sum = number + reverse
text = str(sum)
Loop through the digits in the sum

for i in text:
If a digit is even, do not increase the count. Break to the next number.
if (int(i) % 2 == 0):

break
The sum contained only odd digits. Increase the count.
else:

count += 1
return count

Main Function. *** DO NOT EDIT ***
This function calls each problem's function and prints the returned value. If this
function is modified to print data differently, the team's program may not be scored.
27 Points total
def main():
 print("Problem 0: "+str(problem0()))
 print("Problem 1: "+str(problem1()))
 print("Problem 2: "+str(problem2()))
 print("Problem 3: "+str(problem3()))
 print("Problem 4: "+str(problem4()))
 print("Problem 5: "+str(problem5()))
 print("Problem 6: "+str(problem6()))
main()

